It’s raining adaptive loci!

It never ends with these Denisovans. More and more results. Filling the gaps in our knowledge.

Denisovan DNA found in cave on Tibetan Plateau:

For today’s Buddhist monks, Baishiya Karst Cave, 3200 meters high on the Tibetan Plateau, is holy. For the ancient Denisovans, extinct hominins known only from DNA, teeth, and bits of bone found in another cave 2800 kilometers away in Siberia, it was a favorite rest stop. Last year, researchers proposed that a jawbone found long ago in the Tibetan cave was Denisovan, based on its ancient proteins. But archaeologist Dongju Zhang of Lanzhou University and her team were on a quest for more definitive evidence. So in December, 2018, they began to dig. This week, Zhang’s team reports the first Denisovan ancient DNA found outside Denisova Cave: mitochondrial DNA gleaned not from fossils, but from the cave sediments themselves. Precise dates show the Denisovans took shelter in the cave 100,000 years and 60,000 years ago, and possibly as recently as 45,000 years ago when modern humans were flowing into Asia.

The result is pretty straightforward. Tens of thousands of years of occupation by “Denisovans” in highland Tibet.* The introgression into modern Tibetans, probably via a deeply basal “East Eurasian” Paleolithic lineage absorbed by rice farmers who migrated to the plateau in the last 10,000 years, makes more and more sense.

Related to this is a new paper on dogs, Ancient Dog DNA Shows Early Spread Around the Globe. I’ll have a piece out on this in Quillette shortly (as well as a podcast with the first author on my substack. But here’s one aspect: the Tibetan mastiff which has high altitude adaptation from Tibetan wolves doesn’t seem to show wolf admixture.

So what’s going on? Well, very small levels of genome-wide admixture can still bring in beneficial adaptive loci. Perhaps this is more common in humans than we might imagine.

* I put “Denisovans” in quotes because it is becoming clear East Eurasian hominins were a diverse group of populations with larger effective population sizes than West Eurasian hominins, Neanderthals. Denisovans are a clade, but one with many branches.

What did modern humans look like during the “Out of Africa” event?


Recently I was having an email exchange with a friend (a prominent public intellectual who is not a scientist), and we were thinking about what “ancestral Africans” looked like. More precisely, the populations which were resident around ~100,000 to ~200,000 years before the present. These are the people who are depicted in paleoanthropology documentaries. Here were some of my major contentions:

1) We don’t know what they looked like
2) They probably were more likely to look like modern Africans than non-Africans
3) But modern Africans are diverse in their looks and we could expect that ancient Africans were too

The neighbor-joining tree above is generated with a naive model of successive bifurcation.

1) Khoisan split off 200,000 years ago
2) Mbuti split off 150,000 years ago
3) Mende split off 100,000 years ago
4) Japanese about 50,000 years ago
5) While Pathan and Basque only 15,000 years ago

The model is wrong in the details. Pathan and Basque have some ancestry is which recently diverged, and much that is deeply diverged. The 15,000 year value is just an average. Similarly, the Khoisan have some Eurasian ancestry. But in the broad sketch it illustrates that some African populations diverged a very long time ago from other groups.

Ancient Africans date to ~200,000 years before the present for all the modern populations. Khoisan to Japanese. You could probably use phylogenetic character reconstruction methods to attempt to infer what ancient Africans looked like…but I’m not sure that it would be useful since modern humans have spread over so many ecologies over such a short span of time.

Outside of Sub-Saharan Africa perhaps on the order of 95% of the ancestry derives from an expansion from a small founder group between 60 and 80 thousand years ago. Removing the “Basal Eurasian” component, groups as diverse as Native Americans, Oceanians and East Asians probably derive their ancestry from a common group which flourished between 50 and 60 thousand years ago (this pulse is the majority of the ancestry of Europeans and South and West Asians as well).

The point here is to illustrate that 50,000 years is definitely sufficient for a great deal of diversity to have emerged in human physical variation. And yet the Khoisan are ~200,000 years diverged from their ancestors within Africa. We actually know that indigenous southern Africans have been selected for lighter pigmentation. We also know that loci associated with pigmentation in modern humans exhibits a lot of variation in Africans, and this variation is likely an ancestral feature of our species.

In sum, the number of generations between ancestral Africans and all modern descendent populations is great enough that I’m not uncertain that we can predict what they look like in anything except their skeletal features. Additionally, most of the history of anatomically modern humans was likely highly structured within Africa. That’s another way of saying that ancient Africans themselves were probably physically diverse.

With all that being said, all things equal ancient Africans probably are more likely to look like modern Africans than modern non-Africans. The main reason is simply that modern Africans occupy the same broad ecological landscape as ancient Africans, and many of our features, from our build to our complexion seem dependent upon environmental pressures. There’s lot of evidence that very light skin is probably a derived characteristic of our species (there are consistent signatures of sweeps around pigmentation loci). And, there is also evidence that some of the archaic introgression into non-Africans may have consequences in our morphology and external physical characteristics. For example, Eurasians seem to have very high frequencies of Neanderthal variants of the keratin gene. This is implicated in hair, skin and nail development.

Addendum: Note that even if we have ancient genomes, polygenic characteristics are still hard to predict. Even today common SNPs only explain a minority of the variation in hair color in Europeans.

The architecture of skin color variation in Africa

Baby of hunter-gatherers in Southern Africa

Very interesting abstract at the ASHG meeting of a plenary presentation,Novel loci associated with skin pigmentation identified in African populations. This is clearly the work that one of the comments on this weblog alluded to last summer during SMBE. There I was talking about the likely introduction of the derived SLC24A5 variant to the Khoisan peoples and its positive selection in peoples in southern Africa.

Below is the abstract in full. Those who follow the literature on this see the usual suspects in relation to genes, but also new ones:

Despite the wide range of variation in skin pigmentation in Africans, little is known about its genetic basis. To investigate this question we performed a GWAS on pigmentation in 1,593 Africans from populations in Ethiopia, Tanzania, and Botswana. We identify significantly associated loci in or near SLC24A5MFSD12TMEM138…OCA2 and HERC2. Allele frequencies at these loci in global populations are strongly correlated with UV exposure. At SLC24A5 we find that a non-synonymous mutation associated with depigmentation in non-Africans was introduced into East Africa by gene flow, and subsequently rose to high frequency. At MFSD12, we identify novel variants that are strongly correlated with dark pigmentation in populations with Nilo-Saharan ancestry. Functional assays reveal that MFSD12 codes for a lysosomal protein that influences pigmentation in cultured melanocytes, zebrafish and mice. CRISPR knockouts of murine Mfsd12 display reduced pheomelanin pigmentation similar to the grizzled mouse mutant (gr/gr). Exome sequencing of gr/gr mice identified a 9 bp in-frame deletion in exon two of Mfsd12. Thus, using human GWAS data we were able to map a classic mouse pigmentation mutant. At TMEM138…we identify mutations in melanocyte-specific regulatory regions associated with expression of UV response genes. Variants associated with light pigmentation at this locus show evidence of a selective sweep in Eurasians. At OCA2 and HERC2 we identify novel variants associated with pigmentation and at OCA2, the oculocutaneous albinism II gene, we find evidence for balancing selection maintaining alleles associated with both light and dark skin pigmentation. We observe at all loci that variants associated with dark pigmentation in African populations are identical by descent in southern Asian and Australo-Melanesian populations and did not arise due to convergent evolution. Further, the alleles associated with skin pigmentation at all loci but SLC24A5 are ancient, predating the origin of modern humans. The ancestral alleles at the majority of predicted causal SNPs are associated with light skin, raising the possibility that the ancestors of modern humans could have had relatively light skin color, as is observed in the San population today. This study sheds new light on the evolutionary history of pigmentation in humans.

Much of this is not surprising. Looking at patterns of variation around pigmentation loci researchers suggested years ago that Melanesians and Africans exhibited evidence of similarity and functional constraint. That is, the dark skin alleles date back to Africa and did not deviate from their state due to selection pressures. In contrast, light skin alleles in places like eastern and western Eurasia are quite different.

Nyakim Gatwech

This abstract also confirms something I said in a comment on the same thread, that Nilotic peoples are the ones likely to have been subject to selection for dark skin in the last 10,000 years. You see above that variants on MFSD12 are correlated with dark complexion. In particular, in Nilo-Saharan groups. The model Nyakim Gatwech is of South Sudanese nationality and has a social media account famous for spotlighting her dark skin. In comparison to the Gatwech and the San Bushman child above are so different in color that I think it would be clear these two individuals come from very distinct populations.

The fascinating element of this abstract is the finding that most of the alleles which are correlated with lighter skin are very ancient and that they are the ancestral alleles more often than the derived! We’ll have to wait until the paper comes out. My assumption is that after the presentation Science will put it on their website. But until then here are some comments:

  • There is obviously a bias in the studies of pigmentation toward those which highlight European variability.
  • The theory of balancing selection makes sense to me because ancient DNA is showing OCA2 “blue eye” alleles which are not ancestral in places outside of Western Europe. And in East Asia there their own variants.
  • Lots of variance in pigmentation not accounted for in mixed populations (again, lots of the early genomic studies focused on populations which were highly diverged and had nearly fixed differences). Presumably, African research will pick a lot of this up.
  • This also should make us skeptical of the idea that Western Europeans were necessarily very dark skinned, as now we know that human pigmentation architecture is complex enough that sampling modern populations expand our understanding a great deal.
  • Finally, it’s long been assumed that at some stage early on humans were light skinned on most of their body because we had fur. When we lost our fur is when we would need to have developed dark skin. This abstract is not clear at how far long ago light and dark alleles coalesce to common ancestors.

The Tibeto-Burman and Austro-Asiatic ancestry of Bengalis

My father’s mtDNA lineage phylogeography

When I first got my father’s 23andMe results the Y and mtDNA were an interesting contrast. He, and therefore myself, carried Y lineage R1a1a, the lord of the paternal lineages. That was not that great a surprise. In the 1000 Genomes results for the Bangladeshi sample 20% of the men were direct paternal descendants of the R1a1a progenitor.

The mtDNA was a surprise. It was G1a2. This was curious to me since Bangladesh has some of the highest frequencies in the world of haplogroups M, the subhaplogroups in question being mostly restricted to South Asia. I wasn’t surprised that I was R1a1a, but I was even more confident that my maternal lineage was going to be an M, as would my father’s (my own mtDNA is U2b, not common, but not so surprising). As you can see from the map 23andMe places my father’s maternal lineage somewhere in Northeast Asia. The only information I could get about the geography was for G1a, “G1a has been found in samples from China (Daur, Hui, Kazakh, Korean, Manchu, and a sample of the general population of the city of Shenyang), Japan, Korea, Vietnam, and Siberia (Yakut).”

The biggest sample of mtDNA results from Bangladesh I could find at N = 240 does not find any G at all, let alone G1a2. So this is clearly it is a rare haplogroup in the region. But, the authors do classify 13% of the Bangladeshis as carrying an “East Eurasian” haplogroup. Haplogroup A is found among Southeast Asians and Southern China, though not among Austronesians. Haplogroup F seems to have a similar distribution, as does D, B. The other haplogroups also seem “correctly” assigned in terms of modal distribution. They are all mostly East Asian.

Looking at the Y chromosome haplogroups in the 1000 Genomes there are two of O2 and O3, and one of C3, which are clearly of Southeast Asian origin. With N =5 out of 44 samples that is ~10%. O2 is interesting because it is found at very high frequencies among the Austro-Asiatic populations in South Asia, whether it be the Khasi, or Munda groups (general O2a). O3 seems associated with Tibeto-Burman populations, and C3 with East Asia more generally.

Read More

Release the UK Biobank! (the prediction of height edition)


There’s so much science coming out of the UK Biobank it’s not even funny. It’s like getting the palantír or something.

Anyway, a preprint, submitted for your approval. A vision of things to come? Accurate Genomic Prediction Of Human Height:

We construct genomic predictors for heritable and extremely complex human quantitative traits (height, heel bone density, and educational attainment) using modern methods in high dimensional statistics (i.e., machine learning). Replication tests show that these predictors capture, respectively, ~40, 20, and 9 percent of total variance for the three traits. For example, predicted heights correlate ~0.65 with actual height; actual heights of most individuals in validation samples are within a few cm of the prediction. The variance captured for height is comparable to the estimated SNP heritability from GCTA (GREML) analysis, and seems to be close to its asymptotic value (i.e., as sample size goes to infinity), suggesting that we have captured most of the heritability for the SNPs used. Thus, our results resolve the common SNP portion of the “missing heritability” problem – i.e., the gap between prediction R-squared and SNP heritability. The ~20k activated SNPs in our height predictor reveal the genetic architecture of human height, at least for common SNPs. Our primary dataset is the UK Biobank cohort, comprised of almost 500k individual genotypes with multiple phenotypes. We also use other datasets and SNPs found in earlier GWAS for out-of-sample validation of our results.

A scatter-plot is worth a thousand derivations.

You know what better than 500,000 samples? One billion samples! A nerd can dream….

After agriculture, before bronze

 

The above plot shows genetic distance/variation between highland and lowland populations in Papa New Guinea (PNG). It is from a paper in Science that I have been anticipating for a few months (I talked to the first author at SMBE), A Neolithic expansion, but strong genetic structure, in the independent history of New Guinea.

What does “strong genetic structure” mean? Basically Fst is showing the proportion of genetic variation which is partitioned between groups. Intuitively it is easy to understand, in that if ~1% of the genetic variation is partitioned between groups in one case, and ~10% in another, then it is reasonable to suppose that the genetic distance between groups in the second case is larger than in the first case. On a continental scale Fst between populations is often on the order of ~0.10. That is the value for example when you pool the variation amongst Northern Europeans and Chinese, and assess how much of it can be apportioned in a manner which differentiates populations (so it’s about ~10% of the variation).

This is why ancient DNA results which reported that Mesolithic hunter-gatherers and Neolithic farmers in Central Europe who coexisted in rough proximity for thousands of years exhibited differences on the order of ~0.10 elicited surprise. These are values we are now expecting from continental-scale comparisons. Perhaps an appropriate analogy might be the coexistence of Pygmy groups and Bantu agriculturalists? Though there is some gene flow, the two populations exist in symbiosis and exhibit local ecological segregation.

In PNG continental scale Fst values are also seen among indigenous people. The differences between the peoples who live in the highlands and lowlands of PNG are equivalent to those between huge regions of Eurasia. This is not entirely surprising because there has been non-trivial gene flow into lowland populations from Austronesian groups, such as the Lapita culture. Many lowland groups even speak Austronesian languages today.

Using standard ADMIXTURE analysis the paper shows that many lowland groups have significant East Asian ancestry (red), while none of the highland groups do (some individuals with East Asian admixture seem to be due to very recent gene flow). But even within the highlands the genetic differences are striking. The  Fst values between Finns and Southern European groups such as Spaniards are very high in a European context (due to Finnish Siberian ancestry as well as drift through a bottleneck), but most comparisons within the highland groups in PNG still exceeds this.

The paper also argues that genetic differences between Papuans and the natives of Australia pre-date the rising sea levels at the beginning of the Holocene, when Sahul divided between its various constituents. This is not entirely surprising considering that the ecology of the highlands during the Pleistocene would have been considerably different from Australia to the south, resulting in sharp differences in the hunter-gatherer lifestyles. Additionally, there does not seem to have been a genetic cline. Papuans are symmetrically related to all Australian groups they had samples from.

Using coalescence-based genomic methods they inferred that separation between highlands and some lowland groups occurred ~10-20,000 years ago. That is, after the Last Glacial Maximum. For the highlands, the differences seem to date to within the last 10,000 years. The Holocene. Additionally, they see population increases in the highlands, correlating with the shift to agriculture (cultivation of taro).

None of the above is entirely surprising, though I would take the date inferences with a grain of salt. The key is to observe that large genetic differences, as well as cultural differences, accrued in the highlands of PNG during the Holocene. In the paper they have a social and cultural explanation for what’s going on:

  Fst values in PNG fall between those of hunter-gatherers and present-day populations of west Eurasia, suggesting that a transition to cultivation alone does not necessarily lead to genetic homogenization.

A key difference might be that PNG had no Bronze Age, which in west Eurasia was driven by an expansion of herders and led to massive population replacement, admixture, and cultural and linguistic change (7, 8), or Iron Age such as that linked to the expansion of Bantu-speaking
farmers in Africa (24). Such cultural events have resulted in rapid Y-chromosome lineage expansions due to increased male reproductive variance (25), but we consistently find no evidence for this in PNG (fig. S13). Thus, in PNG, wemay be seeing the genetic, linguistic, and cultural diversity that sedentary human societies can achieve in the absence of massive technology-driven expansions.

Peter Turchin in books like Ultrasociety has aruged that one of the theses in Steven Pinker’s The Better Angels of Our Nature is incorrect: that violence has not decreased monotonically, but peaked in less complex agricultural societies. PNG is clearly a case of this, as endemic warfare was a feature of highland societies when they encountered Europeans. Lawrence Keeley’s War Before Civilization: The Myth of the Peaceful Savage gives so much attention to highland PNG because it is a contemporary illustration of a Neolithic society which until recently had not developed state-level institutions.

What papers like these are showing is that cultural and anthropological dynamics strongly shape the nature of genetic variation among humans. Simple models which assume as a null hypothesis that gene flow occurs through diffusion processes across a landscape where only geographic obstacles are relevant simply do not capture enough of the dynamic. Human cultures strongly shape the nature of interactions, and therefore the genetic variation we see around us.

SLC24A5 is very important, but we don’t know why


The golden of pigmentation genetics started in 2005 with SLC24A5, a putative cation exchanger, affects pigmentation in zebrafish and humans. Prior to that pigmentation genetics was really to a great extent coat color genetics, done in mice and other organisms which have a lot of pelage variation.

Of course there was work on humans, mostly related to melanocortin 1. But more interesting were classical pedigree studies which indicated that the number of loci controlling variation in pigmentation was not that high. This, it was a mildly polygenic trait insofar as some large effect quantitative trait loci could be discerned in the inheritance patterns.

From The Genetics of Human Populations, written in the 1960s, but still useful today because of its comprehensive survey of the classical period:

Depending on what study samples you use variance on a locus of SLC24A5 explains less than 10% or more than 30% of the total variance. But it is probably the biggest effect locus on the whole in human populations when you pool them altogether (obviously it explains little variance in Africans or eastern non-Africans since it is homozygous ancestral by and large in both groups).

One aspect of the derived SNP in this locus is that it seems to be under strong selection. In a European 1000 Genomes sample there are 1003 SNPs of the derived variant, and 3 of the ancestral. Curiously this allele was absent in Western European Mesolithic European hunter-gatherers, though it was present in hunter-gatherers on the northern and eastern fringes of the continent. It was also present in Caucasian hunter-gatherers and farmers from the Middle East who migrated to Europe. It seems very likely that these sorts of high frequencies are due to selection in Europe.

The variant is also present in appreciably frequencies in many South Asian populations, and there seems to have been in situ selection there too, as well as the Near East. In Ethiopia it also seems to be under selection.

It could be something due to radiation…but the Near East and South Asia are quite high intensity in that regard. As are the highlands of Ethiopia. About seven years ago I suggested that rather that UV radiation as such the depigmentation that has occurred across the Holocene might be due to agriculture and changes in diet.

But a new result from southern Africa presented at the SMBE meeting this year suggests that this can not be a comprehensive answer. Meng Lin in Brenna Henn’s lab uses a broad panel of KhoeSan populations to find that the derived allele on SLC24A5 reaches ~40% frequency. Probably a high fraction of West Eurasian admixture in these groups is around ~10% being generous. Where did this allele come from? The results from Joe Pickrell a few years back are sufficient to explain: there was a movement of pastoralists with distant West Eurasian ancestry who brought cattle to southern Africa, and so resulted in the ethnogenesis of groups such as the Nama people (there is also Y chromosomal work by Henn on this).

Sad human with two derived alleles of SNP of interest

Lin reports that the haplotype around SLC24A5 is the same one as in Western Eurasia. Iain Mathieson (who is now at Penn if anyone is looking for something to do in grad school or a post-doc) has told me that the haplotype in the Motala Mesolithic hunter-gatherers and in the hunter-gatherers from the Caucasus are the same. It seems that this haplotype was widespread early in the Holocene. Curiously, the Motala hunter-gatherers also carry the East Asian haplotype around their derived EDAR variant.

I don’t know what to make of this. My intuition is that if a haplotype like this is so widespread nearly ~10,000 years ago recombination would have broken it apart into smaller pieces so that haplotype structure would be easier to discern. As it is that doesn’t seem to be the case.

And we also don’t know what’s going on withSLC24A5. Obviously it impacts skin color. It has been shown to do so in admixed populations. But it is hard to believe that that is the sole target of natural selection here.

The Bronze age demographic transformation of Britain

In Norman Davies’ the excellent The Isles: A History, he mentions offhand that unlike the Irish the British to a great extent have forgotten their own mythology. This is one reason that J. R. R. Tolkien created Middle Earth, they gave the Anglo-Saxons the same sort of mythos that the Irish and Norse had.

But to some extent I think we can update our assessments. Science is bringing myth to life. The legendary “Bell Beaker paper” is now available in preprint form, The Beaker Phenomenon And The Genomic Transformation Of Northwest Europe. The methods are not too abstruse if you have read earlier works on this vein (i.e., no Nick Patterson authored methodological supplement that I saw). And the results are straightforward.

And what are those results?

First, the Bell Beaker phenomenon was both cultural and demographic. Cultural in that it began in the Iberian peninsula, and was transmitted to Central Europe, without much gene flow from what they can see. Demographic in that its push west into what is today the Low Countries and France and the British Isles was accompanied by massive gene flow.

In their British samples they conclude that 90% of the ancestry of early Bronze Age populations derive from migrants from Central Europe with some steppe-like ancestry. In over words, in a few hundred years there was a 90% turnover of ancestry. The preponderance of the male European R1b lineage also dates to this period. It went from ~0% to ~75-90% in Britain over a few hundred years.

If most of the genetic-demographic character of modern Britain was established during the Bronze Age*, then there has been significant selection since the Bronze Age. The figure to the left shows ancient (Neolithic/Bronze age) frequencies of selected SNPs, with modern frequencies in the British in dashed read. The top-left SNP is for HERC2-OCA2, the region related to brown vs. blue eye color, and also associated with some more general depigmentation. The top-right SNP is in SLC45A2, the second largest effect skin color locus in Europeans. The bottom SNP is for a mutation on LCT, which allows for the digestion of milk sugar as adults.

The vast majority of the allele frequency change in Britons for digestion of milk sugar post-dates the demographic turnover. In other words, the modern allele frequency is a function of post-Bronze Age selection. This is not surprising, as it supports the result in Eight thousand years of natural selection.

1000 Genomes derived SLC45A2 SNP frequency

At least as interesting are the pigmentation loci. The fact that the derived frequency in HERC2-OCA2 is lower in both British and Central European Beaker people samples indicates that the lower proportion is not an artifact of sampling. Britons have gotten more blue-eyed over the last 4,000 years. Second, SLC45A2 is at shocking low proportions for modern European populations.

HGDP derived SLC45A2 SNP frequency

In the 1000 Genomes the 4% ancestral allele frequency is almost certainly a function of the Siberian (non-European) ancestry. In modern Iberians the ancestral frequency is 18% (and it is even higher in Sardinians last I checked), but in Tuscans it is ~2%. Though not diagnostic of Europeans in the way the derived SNP at SLC24A2 is, SLC452 derived variants are much more constrained to Europe. Individuals who are homozygote ancestral for SNPs atSLC45A2 rare in modern Northern Europeans (pretty much nonexistent actually). But even as late as the Bronze Age they would have been present at low but appreciable frequencies.

This particular result convinces me that the method in Field et al. which detected lots of recent (last 2,000 years) selection on pigmentation in British populations is not just a statistical artifact. Though these papers are solving much of European prehistory, they are also going to be essential windows into the trajectory of natural selection in human populations over the last 5,000 years.

* In the context of this paper the Anglo-Saxon migrations tackled by the PoBI paper are minor affairs because the two populations were already genetically rather close. Additionally, the PoBI paper found that the German migrations were significant demographic events, but most of the ancestry across Britain does date to the previous period.