“We only use 10% of our brain”. I don’t know where that idea originated but it certainly took off as a popular meme – taxi drivers seem particularly taken with it. It’s rubbish of course – you use more than that just to see. But it captures an idea that we humans have untapped intellectual potential – that in each of us individually, or at least in humans in general lies the potential for genius.

A new hypothesis proposes that savantism arises due to a combination of autism and another condition, synaesthesia. Synaesthesia is commonly thought of as a cross-sensory phenomenon, where, for example, different sounds will induce the experience of particular colours, or tastes will induce the tactile experience of a shape. But in most cases the stimuli that induce synaesthesia are not sensory, but conceptual categories of learned objects, such as letters, numbers, days of the week, months of the year. The most common types involve coloured letters or numbers and what are called mental “number forms”.
These go beyond the typical mental number line that most of us can visualise from early textbooks. They are detailed, stable and idiosyncratic forms in space around the person, where each number occupies a specific position. They may follow complicated trajectories through space, even wrapping around the individual’s body in some cases. These forms can be related to different reference points (body, head or gaze-oriented) and can sometimes be mentally manipulated by synaesthetes to examine them more closely at specific positions.
The suggestion in relation to savantism is that such forms enable arithmetical calculations to be carried out in some kind of spatial, intuitive way that is distinct from the normal operations of formal arithmetic – but only when the brain is wired in such a way to take advantage of these special reprepsentations of numbers, as apparently can arise due to autism.
It has been proposed that the intense and narrowly focused interests typical of autism can lead to prolonged practice of these skills, which thus emerge and improve over time. While certainly likely to be involved in the development of these skills, on its own this explanation seems insufficient. It seems more likely that these special abilities arise from more fundamental differences in the way the brains of autistic people process information, with a greater degree of processing of local detail, paralleled by greater local connectivity in neural circuits and reductions in long-range integration.
Local processing may normally be actively inhibited. This idea has been referred to as the tyranny of the frontal lobes (especially of the left hemisphere), which impart top-down expectations with such authority that they override lower areas, conscripting them into service for the greater good. The potential of the local elements to process detailed information is thus superseded in order to achieve optimal global performance. The idea that local processing is actively suppressed is supported by the fact that savant abilities can sometimes emerge after frontal lobe injuries or in cases of frontotemporal dementia. Increased skills in numerical estimation can also, apparently, be induced in healthy people by using transcranial magnetic stimulation to temporarily inactivate part of the left hemisphere.
This kind of focus on local details, combined with an exceptional memory, may explain many types of savant skills, including musical and artistic ones. As many as 10% of autistics show some savant ability. These “islands of genius” (including things like perfect pitch, for example) are typically remarkable only on the background of general impairment – they would be less remarkable in the general population. Really prodigious savants are much more rare – these are people who can do things outside the range of normal abilities, such as phenomenal mathematical calculations. In these cases, the increased local processing typical of autism may not be, by itself, sufficient to explain the supranormal ability.
The idea is that such prodigious calculations may also rely on the concrete visual representations of numbers found in some types of synaesthesia. This theory was originally proposed by Simon Baron-Cohen and colleagues and arose from case studies of individual savants, including Daniel Tammett, an extraordinary man who has both Asperger’s syndrome and synaesthesia.
I had the pleasure of speaking with Daniel recently about his particular talents on the FutureProof radio programme for Dublin’s Newstalk Radio. (The podcast, from Nov 27th, 2010, can be accessed, with some perseverance, here). Daniel is unique in many ways. He has the prodigious mental talents of many savants, for arithmetic calculations and memory, but also has the insight and communicative skills to describe what is going on in his head. It is these descriptions that have fueled the idea that the mental calculations he performs rely on his synaesthetic number forms.
Daniel experiences numbers very differently from most people. He sees numbers in his mind’s eye as occupying specific positions in space. They also have characteristic colours, textures, movement, sounds and, importantly, shapes. Sequences of numbers form “landscapes in his mind”. This is vividly portrayed in the excellent BBC documentary “The Boy With the Incredible Brain” and described by Daniel in his two books, “Born on a Blue Day” and “Embracing the Wide Sky”.
His synaesthetic experiences of numbers are an intrinsic part of his arithmetical abilities. (I say arithmetical, as opposed to mathematical, because his abilities seem to be limited to prodigious mental calculations, as opposed to a talent for advanced calculus or other areas of mathematics). Daniel describes doing these calculations by some kind of mental spatial manipulation of the shapes of numbers and their positions in space. When he is performing these calculations he often seems to be tracing shapes with his fingers. He is, however, hard pressed to define this process exactly – it seems more like his brain does the calculation and he reads off the answer, apparently deducing the value based at least partly on the shape of the resultant number.

Additional evidence to support the idea comes from studies testing whether the concrete and multimodal representations of numbers or units of time are associated with enhanced cognitive abilities in synaesthetes who are not autistic. Several recent studies suggest this is indeed the case.
Many synaesthetes say that having particular colours or spatial positions for letters and numbers helps them remember names, phone numbers, dates, etc. Ward and colleagues have tested whether these anecdotal reports would translate into better performance on memory tasks and found that they do. Synaesthetes did show better than average memory, but importantly, only for those items which were part of their synaesthetic experience. Their general memory was no better than non-synaesthete controls. Similarly, Simner and colleagues have found that synaesthetes with spatial forms for time units perform better on visuospatial tasks such as mental rotation of 3D objects.
Synaesthesia and autism are believed to occur independently and, as each only occurs in a small percentage of people, the joint occurrence is very rare. Of course, it remains possible that, even though most people with synaesthesia do not have autism and vice versa, their co-occurrence in some cases may reflect a single cause. Further research will be required to determine definitively the possible relationship between these conditions. For now, the research described above, especially the first-person accounts of Daniel Tammett and others, gives a unique insight into the rich variety of human experience, including fundamental differences in perception and cognitive style.
Murray, A. (2010). Can the existence of highly accessible concrete representations explain savant skills? Some insights from synaesthesia Medical Hypotheses, 74 (6), 1006-1012 DOI: 10.1016/j.mehy.2010.01.014
Bor, D., Billington, J., & Baron-Cohen, S. (2008). Savant Memory for Digits in a Case of Synaesthesia and Asperger Syndrome is Related to Hyperactivity in the Lateral Prefrontal Cortex Neurocase, 13 (5), 311-319 DOI: 10.1080/13554790701844945
Simner, J., Mayo, N., & Spiller, M. (2009). A foundation for savantism? Visuo-spatial synaesthetes present with cognitive benefits Cortex, 45 (10), 1246-1260 DOI: 10.1016/j.cortex.2009.07.007
Yaro, C., & Ward, J. (2007). Searching for Shereshevskii: What is superior about the memory of synaesthetes? The Quarterly Journal of Experimental Psychology, 60 (5), 681-695 DOI: 10.1080/17470210600785208

Comments are closed.