
But this heuristic may not be applicable to bacteria. Or, more precisely, when you remove the large set of parameters which constrain the adaptive landscape of multicellular organisms, you may be exploring an evolutionary space with somewhat different rules. If someone reported that 25% of deletions in a multicellular organism resulted in increased fitness I’d probably be curious if there was a basic human error somewhere along the way generating this crazy proportion. But fast-breeding and genomically economically designed bacteria may not be governed by the same expectations.
In the first set of experiments the authors constructed lines with deletions. In a second set they predicted that wild type lineages which underwent experimental evolution would eventually also accrue deletions. They could confirm this by sequencing their genomes. And sure enough, they did seem to find suggestive evidence for such a dynamic, though I’d have to look deeper into the supplements to be convinced (I do not get the sense from the text that these results were quite so strong).
How to explain this conundrum? Think of three-spined stickleback. In the natural environment of bacteria they have to encounter many different adaptive pressures, and no doubt have a whole suite of phenotypes derived from genetic processes. But once transferred to stable and rich culture media these adaptations are superfluous. One might posit that the deletions are simply release of functional constraint, and stochastic loss of function (i.e., basically atrophy on the genomic level), but remember that lineages with deletions seem positively selected for in many cases! The authors argue that this looks to be more than a random-walk process. Atrophy occurs because of the lack of negative selection pressure against loss of a trait and its genetic underpinning. But there may also be genuine costs to a trait, so that atrophy is positively selected for. For large organisms that is obvious when it comes to construction of tissue, or perhaps a complex and energetically intensive behavior. But in bacteria the root of the issue is somewhat different. I’ll let the authors speak here:
…With regard to the beneficial deletions, one potential explanation is that loss of these genes result in decreased energy/mass expenditure on DNA, RNA and protein and a resulting faster growth rate because more resources can be allocated to other rate-limiting processes….

Citation: Koskiniemi S, Sun S, Berg OG, Andersson DI (2012) Selection-Driven Gene Loss in Bacteria. PLoS Genet 8(6): e1002787. doi:10.1371/journal.pgen.1002787
Image credit: Paul Harrison

Comments are closed.