
Above I’ve summarized I think a good portion of the phylogenetic component of the paper, which attempts to resolve confusion in this area for rice. Basically the wild rice lineages are structured, and the two domestic cultivars seem to derive from different ancestral populations (indica from Or-I and japonica from Or-IIIa). Note the rapid diversification of japonica and to a lesser extent indica clades. No surprise that genetic diversity increases from japonica to the wild varieties, with indica in between. But, there has also been hybridization between indica and japonica. This is important, because signals of admixture and introgression have resulted in wildly different implications about the origins of domestic cultivars, at least from my cursory reading of this literature.
There have long been lines of evidence that the similarities between indica and japonica are due to selection operating upon “domestication genes.” In other words, on characteristics relevant for humans these two cultivars were reshaped from their ancestral states, and pushed along a parallel path toward convergence. Not only that, but they exchanged genes exactly on the loci which are implicated in traits associated with domestic rice.

Dr. Brian Moore asserts that nothing in evolution makes sense except in the light of phylogeny (you can rephrase Dobzhansky however you want; e.g., nothing in evolution makes sense except in the light of population genetics). And these results from rice certainly illustrate the power of phylogeny. But they also show us that we need to not get locked into the all-powerful grip of one phylogenetic tree to bind them all. Much of the genome of domestic rice cultivars is well defined by the phylogenetic tree above. But, a subset of the genome of particular importance, and evolutionary relevance, is not. This does not mean phylogenetics is not useful; we wouldn’t be able to test for domestication genes sweeping through populations via introgression without the explict tree model in mind. It simply means that when considering evolutionary process we need to strike a balance between the contingent straightjacket which descent along a tree imposes, and the power of hybridization to breakdown those barriers and almost deterministically sweep across the tips of the phylogeny and alter phenotypic characters through adaptation on the genomic level.


Comments are closed.